Cloud Features and Mesoscale Structure of Non-Convective High Wind Events

EarthzineDEVELOP Virtual Poster Session, Original

GOES-13 Sounder Red- Blue-Green (RGB) Air Mass product imagery from the GOES-R Proving Ground can be used to identify stratospheric intrusions, which appear as bright red regions in the RGB imagery and can result in destructive winds at the surface. During this project, the mesoscale structure and cloud features of the pictured Oct. 26, 2010, Midwest Cyclone were examined using MERRA and RUC data. Image Credit: DEVELOP SLU Team.
GOES-13 Sounder Red- Blue-Green (RGB) Air Mass product imagery from the GOES-R Proving Ground can be used to identify stratospheric intrusions, which appear as bright red regions in the RGB imagery and can result in destructive winds at the surface.  During this project, the mesoscale structure and cloud features of the pictured Oct. 26, 2010, Midwest Cyclone were examined using MERRA and RUC data. Image Credit: DEVELOP SLU Team.

GOES-13 Sounder Red- Blue-Green (RGB) Air Mass product imagery from the GOES-R Proving Ground can be used to identify stratospheric intrusions, which appear as bright red regions in the RGB imagery and can result in destructive winds at the surface. During this project, the mesoscale structure and cloud features of the pictured Oct. 26, 2010, Midwest Cyclone were examined using MERRA and RUC data. Image Credit: DEVELOP SLU Team.

Authors: Nicholas Elmer, Matt Warbritton

Mentors/Advisors (affiliation): Dr. Emily Berndt (Saint Louis University), Dr. Timothy Eichler (Saint Louis University), Dr. Jack Fishman (Saint Louis University)

Team Location: Saint Louis University, St. Louis, Missouri

Abstract: Intense extratropical cyclones are often associated with non-convective high winds, which have devastating economic and societal impacts. A summer study investigated the influence of stratospheric intrusions on the production of high surface winds for three recent events: the Oct. 26-27, 2010, Great Lakes event; the Oct. 29-30, 2011, early season Nor’easter; and the Jan. 2-3, 2012, United Kingdom storm. The study this fall focused on investigating the mesoscale structure and cloud features associated with the Oct. 26-27, 2010, Great Lakes event. Rapidly intensifying cyclones are commonly associated with tropopause folds, which can be identified by intrusions of subsiding warm, dry, ozone-rich air. Previously, NASA products were used to verify that the dry intrusions associated with these events contained large concentrations of ozone and therefore were stratospheric in origin. Additionally, a link was made between red regions in the Red-Blue-Green (RGB) Air Mass imagery and stratospheric air. The stratospheric air also was connected to strong, non-convective surface winds which occurred below the dry intrusion. Currently, only a synoptic analysis of these non-convective high wind events has been completed. This study analyzed mesoscale parameters to investigate the possible presence of the sting jet in the Midwest United States case study and determined whether MERRA data could adequately resolve and give additional information about cloud features linked to high surface winds. This study used NASA satellite products and MERRA reanalysis data to diagnose the mesoscale and dynamical structure of non-convective high wind events. This project also incorporated the use of the Spinning Enhanced Visible and Infrared Imager (SEVIRI), Aeromatic Information Retreival System (AIRS), and experimental RGB Air Mass imagery derived from MODIS products aboard Aqua and Terra satellites to analyze the storm structure.

Transcript available here.