HYPERSPECTRAL BIOFILM CLASSIFICATION ANALYSIS TO DETERMINE CARRYING CAPACITY FOR MIGRATORY BIRDS IN THE SOUTH BAY SALT PONDS

Wei-Chen Hsu, University of California at Berkeley
Amber Kuss, San Francisco State University
Tyler Ketron, Stanford University
Andrew Nguyen, California State University, East Bay
Alex Remar, University of Delaware
Michelle Newcomer, San Francisco State University
J.W. Skiles PhD, NASA Ames Research Center

NASA Ames Research Center
April 1, 2011
Applied Sciences Related to South San Francisco Bay Ecological Forecasting

• **Community Concerns**
 – Provide habitat for endangered animal and vegetation species
 – Increase Shorebird habitats for foraging and migration
 – Understand changes in vegetation colonization of marsh habitat during the restoration process.

• **Partners**

- US Geological Survey
- Coastal Conservancy
- San Francisco Estuary Institute
- US Fish and Wildlife Service
- California Department of Fish and Game
- San Francisco Bay Conservation and Development Commission
- US Geological Survey
- California Department of Fish and Game
- San Francisco Bay Conservation and Development Commission

• **Decision Making Process & Partner Needs**
 – Use NASA satellite data to map the spatial distribution and density of biofilm.
 – Need for improved understanding of biofilm’s role within the South San Francisco Bay’s wetland ecosystem.

Science Advisors

- **Erich Fleming**, Ph.D
 SETI Institute, NASA Ames Research Center
- **Brad Bebout**, Ph.D
 NASA Ames Research Center
- **Leslie Bebout**, Ph.D
 NASA Ames Research Center
- **Angela Detweiler**
 NASA Ames Research Center
Project Objectives and Study Area

Objectives

- Use GER-1500 spectroradiometer to create Spectral Library of Biofilm
- Monitor the spatial distribution and density of biofilm throughout the South Bay
- Provide a taxonomic classification of the dominant biofilm species in the South San Francisco Bay Area
- Estimate the South Bay Salt Pond Restoration Area’s carrying capacity of shorebirds
Field and Laboratory Methodology

Species Classification

GER Measurements

Chlorophyll a Analysis
Remote Sensing Methodology

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Purpose</th>
<th>Bands Used</th>
<th>Wavelengths (µm)</th>
<th>Resolution (m)</th>
<th>Dates used</th>
<th>Image Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat 5 TM</td>
<td>Detect Vegetation</td>
<td>3</td>
<td>0.45-0.69</td>
<td>30</td>
<td>8/18/94, 8/22/07, 8/27/09, 7/5/10</td>
<td>Glovis (USGS, 2010a)</td>
</tr>
<tr>
<td>IKONOS</td>
<td>Detect Vegetation</td>
<td>1</td>
<td></td>
<td></td>
<td>2008, 2009</td>
<td>GeoEye</td>
</tr>
<tr>
<td>Hyperion on EO-1</td>
<td>Obtain spectral curve for biofilm</td>
<td>48</td>
<td>426.82-905.05</td>
<td>30</td>
<td>3/26/10, 7/7/10</td>
<td>Glovis (USGS, 2010a)</td>
</tr>
</tbody>
</table>

Hyperion Classification procedure

Where:
- \(n \) = number of bands
- \(\alpha \) = angle formed between reference spectrum and image spectrum
- \(x \) = image spectrum
- \(y \) = reference or target spectrum

\[
\alpha = \cos^{-1} \left[\frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}} \right]
\]

Spectral Angle Mapper Classification Algorithm
Field and Laboratory Lab Results

Percent Distribution of Main Taxonomic Species

Chlorophyll a and Observational Density

H = High Density Biofilm
M = Medium Density Biofilm
L = Low Density Biofilm
32 = Bayside
34 = Pondside
Remote Sensing Results

Hyperion Classification-Spectral Angle Mapper

Total Area of Biofilm

28,641,600 m²
Remote Sensing Results

Landsat NDVI

- Nine Landsat Images mapping the likelihood of biofilm presence
- June, 2006 through July, 2010
- ↑ Likelihood = ↑ Appearance

Likelihood of Biofilm Presence

High

Low

National Aeronautics and Space Administration
Carrying Capacity Results

Carrying Capacity = \(
\frac{A \times B \times D}{C}
\)

Where:
A = Area of Biofilm (m\(^2\))
B = Biofilm Biomass (g C/ m\(^2\))
D = Biofilm Energy Density (kJ/g)
C = Bird Consumption Rate of Biofilm (kJ/d bird)

Biofilm in the South Bay Salt Pond Restoration Area, alone, can feed
\(\approx 200,000 (\pm 25,000)\) shorebirds per day!
South San Francisco Bay Ecological Forecasting

Conclusions

• Biofilm has a distinguished spectral signature, which can be identified in satellite imagery.
• Biofilm appears to flourish in tidal, bay-side mudflats where vegetation is unable to grow, such as recently rehabilitated salt ponds.
• The dominant biofilm genus in the South San Francisco Bay Area is *Navicula*.
• Biofilm in the South Bay Salt Pond Restoration Area, alone, can feed ≈ 200,000 (± 25,000) shorebirds per day!
Transition to Partner

Partners:

- US Fish and Wildlife Service
- US Geological Survey
- California Department of Fish and Game
- San Francisco Estuary Institute
- San Francisco Bay Conservation and Development Commission

Benefits to Partner:

- Spectral library of various biofilm densities.
- Maps of biofilm density and spatial distribution.
- Estimated carrying capacity of South San Francisco Bay for shorebirds.
- Use remote sensing instead of field crew