Human Factors in Unmanned Aircraft Systems

Gregory A. Morales
California State University, Long Beach
Mark Pestana
NASA Dryden Flight Research Center

Introduction
- As part of the FAA Reauthorization Act, the Federal Aviation Administration is tasked to develop regulations testing and licensing unmanned aircraft systems (UAS) to be integrated in the National Airspace System (NAS).
- Led by NASA’s Dryden Flight Research Center, a project is underway to address safety and operational challenges for UAS integration.
- The Research Ground Control Station is being developed as a test bed and database to provide data and proof of concept for a Ground Control Station.
- The RGCS will support piloting operations of control of the D.R.O.I.D. and TG-14 surrogate aircraft.
- This work supports the development of requirements and practices with consideration to human factors issues for the RGCS.

Unmanned Aircraft Systems
- Currently, piloting an unmanned aircraft is a drastically different experience from that of a manned aircraft.
 - Delays between the GCS and aircraft
 - Non-standard information displays
 - Restricted out-the-window view (30° field of view)
 - Deprived of other sensory feedback from the aircraft
 - Auditory, Vibrotactile, Olfactory, Taste

Human Factors Considerations

Federal Aviation Regulations
- The FAA is developing regulations and classifications for UAS, and the operation of UAS in the NAS.
- **Tasks:**
 - Determine current, relevant FAR regulations for manned aircraft with similar characteristics and capabilities as unmanned aircraft.
 - The RGCS human-machine interface shall be capable of controlling a wide range of UAVs.

Situation Awareness
- A significant predictor of performance SA is the
 1. **Perception** of elements in the environment within a volume of time and space
 2. **Comprehension** of their meaning
 3. **Projection** of their status in the near future
- Information should be displayed to support pilot’s SA without over-whelming cognitive processing.

Information Requirements
- Understanding pilots domain-specific information requirements directly inform display requirements.
- Research on UAS information requirements is lacking.
- Inferences can be made from task analyses of manned flight and UAS flight manuals.

Human Factors Methods Applied

Ergonomics
- Design for the 5th percentile female and 95th percentile male target population
- 5th percentile reach envelope to ensure access to all controls
- 95th percentile measurements to fit the environment to the user
- **Task:** Extract anthropometric data from existing MIL- and NASA-standard resources

Recommendation
- Large 120° out-the-window view
- Centrally located ‘Glass' cockpit displays to enhance information extraction
- Advanced displays for improved navigation, traffic, weather and terrain situation awareness.

Controls
- Stick and throttle for manual control
- Hard controls for critical functions
- Touch screens, Keyboard, Mouse, Space mouse
- For autonomous flight and less time critical functions dependent functions
- Direct selection and entry of values
- Flexibility/capability for various aircraft

Displays
- Multi-function / Engine Displays
- Primary Flight Display
- CSD – NASA Ames FDDRL