University Partnership for Aeroelastic Control of Lightweight Flexible Structures
Francisco Peña *, Jessica Alvarenga *
Mentor: Dr. Lance Richards †
*Structures, Propulsion And Control Engineering (SPACE), NASA University Research Center, California State University, Los Angeles
† National Aeronautics and Space Administration, Dryden Flight Research Center, Edwards, CA

Motivation
- Methods are investigated for monitoring and control of lightweight unmanned flying aerospace structures
- Utilize NASA Dryden’s real-time fiber-optic strain sensing (FOSS) technology and deformation shape prediction capabilities to obtain structural deformation data
- Provide feedback to control system to mitigate aeroelastic effects on the airframe
- Development of methods to reduce the risk of in-flight breakups
- Results will be useful in the monitoring and control of a wide variety of current as well as future generations of aircraft and aerospace structures
- Application to the SPACE Center UAV (Odyssey)

Deformation Shape Estimation of CSULA UAV Wing
- Analytical and experimental studies on the Odyssey wings to evaluate the accuracy of the real-time deformation shape predictions and measure structural vibration of the UAV wings
- Strain-based displacement theories developed at NASA’s Dryden Flight Research Center used to determine wing deflection
- Strain and deformation information extracted from FEM
- Results compared with expected displacement values

Fiber-Optic Strain Sensing (FOSS) on CSULA UAV
- Instrument the SPACE UAV with FOSS technology
- Structural health monitoring during real-time flight
- Test-bed for real-time studies
 - Strain-based deformation shape estimation
 - Structural health monitoring, damage detection and condition assessment
 - Feedback to flight control system
 - Design of conforming trailing edge wing
 - Aero-elastic stability and flutter control

Conforming Trailing Edge (Micro-MUTT)
- Conforming trailing edge design using segmented aircraft control surfaces
- Suppression and control of structural resonance due to lift forces and vibration modes.
- Apply localized correcting forces to the structure
- Aerodynamic model created with the vortex lattice method for fluid dynamics.
- Investigate effectiveness of a segmented control surface design

Odyssey UAV Finite Element Model (FEM)
- Airframe modeled with Nastran/FEMAP
- Forces modeled after realistic flight loads

Loading Studies for Conforming Trailing Edge
- SPACE Center UAV: AVL load distribution
- Segmented control surfaces wing lift distributions: root bias (top) and tip bias (bottom)

Acknowledgements
This work is supported by the NASA University Research Center (URC) Grant No. URC NCC NNX08BM44A in collaboration with NASA’s Dryden Flight Research Center. Special acknowledgement to SPACE Center Director, Dr. Helen Boussalis.